AEA365 | A Tip-a-Day by and for Evaluators

TAG | results chain

Hello, my name is Michel Laurendeau, and I am a consultant wishing to share over 40 years of experience in policy development, performance measurement and evaluation of public programs. This is the fifth of seven (7) consecutive AEA365 posts discussing a stepwise approach to integrating performance measurement and evaluation strategies in order to more effectively support results-based management (RBM). In all post discussions, ‘program’ is meant to comprise government policies as well as broader initiatives involving multiple organizations.

This post discusses how the relation of performance measurement to results-based management should be articulated and incorporated into logic models.

Step 5 – Including the Management Cycle

Some logic models try to include management as a program activity leading to corporate results (e.g., ‘financial/operational sustainability’ and ‘protection of organization’) that are presented as program outcomes. Indeed, good management can help improve program delivery and thus contribute to program performance. However, that contribution is indirect and normally achieved through the ongoing oversight and control of program delivery (and the occasional revision of program design) with requisite adjustments to operational or strategic plans being informed by the ongoing measurement (or monitoring) and the periodic assessments of program performance (see Figure 5a).

Results-based management (RBM) then depends on the identification of relevant indicators and the availability of valid and reliable data to correctly inform players/stakeholders and adequately support management reporting and decision-making processes. The quality and use of performance measurement systems for governance is actually one of many elements of Management Accountability Frameworks (MAF) in the Canadian Federal Government, with other elements covering expectations regarding stewardship, policy and program development, risk management, citizen-focused service, accountability and people management. However, MAFs are the object of development and an assessment process that is totally separate from the one used for Performance Measurement Frameworks (PMF) based on delivery process models and/or logic models.

Indeed, the management cycle is relatively independent from actual program operations, with management standing in a relation of authority above program staff to provide oversight and control at each step of the delivery process (see Figure 4b in yesterday’s AEA365 post).

Trying to build the management cycle as a chain of results (or as a part of it) in a logic model is then totally inappropriate as it creates unnecessary confusion between management and program performance issues. Presenting the results of good management as program outcomes also blurs the distinction between efficiency (i.e., the internal capacity to deliver) and effectiveness (i.e., program impacts on target populations). Figure 5b below shows how to properly situate the management cycle in a logic model itself, essentially as an authoritative or facilitative process without direct causal links to specific program results.

This does not mean that management issues should be excluded from PMFs. Relevant indicators of management performance should also be identified for monitoring purposes whenever they are identified by management itself as internal factors or risks that do (or may) influence program delivery.

The next AEA365 post will discuss ways of addressing indicators and actual measures of performance.

Do you have questions, concerns, kudos, or content to extend this aea365 contribution? Please add them in the comments section for this post on the aea365 webpage so that we may enrich our community of practice. Would you like to submit an aea365 Tip? Please send a note of interest to aea365@eval.org . aea365 is sponsored by the American Evaluation Association and provides a Tip-a-Day by and for evaluators.

· · ·

Hello, my name is Michel Laurendeau, and I am a consultant wishing to share over 40 years of experience in policy development, performance measurement and evaluation of public programs. This is the second of seven (7) consecutive AEA365 posts discussing a stepwise approach to integrating performance measurement and evaluation strategies in order to more effectively support results-based management (RBM). In all post discussions, ‘program’ is meant to comprise government policies as well as broader initiatives involving multiple organizations.

This post presents the approach to the development of result chains and their integration within a Theory of Change (TOC) from a program perspective.

Step 2 – Developing the Program Theory of Intervention (PTI)

Program interventions are best modeled using chains of results with a program delivery (activity – output) sequence followed by an outcome sequence linking outputs to the program’s intended result (final outcome). Most models use only two levels of outcomes, although some authors advocate using as many as five. However, three levels of outcomes would seem to be optimal as it allows properly linking chains of results to broader TOCs, with the link being made through factors (immediate outcomes) that influence behaviors (intermediate outcomes) in target populations, in order to resolve the specific societal issue (final outcome) that has given rise to the program (see Figure 2a).

 

In chains of results, outputs are the products delivered by the program (as well as services, through a push-pull approach) that reach target populations, marking the transition between the sequence controlled by the program (i.e. program control zone) and the sequence controlled by recipients (i.e., influence zone of the program).

Logic models developed using this approach help clarify how the program intervention is assumed to achieve its intended results (i.e., the nested program theory of intervention) under the conditions defined in the broader TOC (see Figure 2b).

Developed this way, logic models do resolve a number of issues:

  • The models provide a clear depiction of the chains of results and of the underlying working assumptions or hypotheses (i.e. salient causal links) of the program interventions and of their contribution to a common final result that is specific to the program;
  • The models provide the basis to identify comprehensive sets of indicators supporting ongoing performance measurement (i.e. monitoring) and periodic evaluations, from which a subset can be selected for reporting purposes;
  • Indicators can also cover external factor/risks that have (or may have) an ongoing influence on program results and that should be considered (i.e. included as control variables) in analyses to obtain more reliable assessments of program effectiveness.

However, developing a logic model that is a valid representation of program theories of interventions is easier said than done. The next AEA365 post will offer some suggestions for achieving that goal. Further, since logic models focus heavily on program outcomes, they provide very little information on delivery processes in support of management oversight and control. Subsequent posts will be discussing how program delivery can be meaningfully addressed and properly integrated in program theories of intervention.

Do you have questions, concerns, kudos, or content to extend this aea365 contribution? Please add them in the comments section for this post on the aea365 webpage so that we may enrich our community of practice. Would you like to submit an aea365 Tip? Please send a note of interest to aea365@eval.org . aea365 is sponsored by the American Evaluation Association and provides a Tip-a-Day by and for evaluators.

· · · · ·

Archives

To top